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Abstract. In this work the scattering from an infinite dielectric cylinder embedded into 
another cylinder is considered. In the case of an eccentric circular cylinder the problem is 
solved using the classical separation of variables techniques combined with related trans- 
lational addition theorems. When the difference in the indices of refraction of the cylinders 
is small a perturbation series is developed up to second order. For non-circular arbitrary 
inhomogeneities, an integral equation method is developed by employing the homogeneous 
scatterer Green function. Numerical results are computed for circular cylindrical inhomo- 
geneities; the convergence of the perturbation series and the properties of the scattered field 
are discussed. 

1. Introduction 

Scattering from complex bodies is often used for detecting possible internal inhomo- 
geneities and non-symmetries. By observing the field scattered by a body on which 
radiation is impinging it is possible to obtain information about its internal structure. 
Investigation of cells (Wyatt and Phillips 1972) and of biological bodies (Guru and Chen 
1976), remote sensing techniques ( L a t h e r  and Pyle 1972) and detection of imper- 
fections inside optical waveguides and lenses and straightforward examples. 

The literature on scattering from inhomogeneous scatterers is mostly concentrated 
on scatterers with radially stratified dielectric distributions (Kerker 1969). In this work 
the scattering from arbitrary infinitely long dielectric cylinders embedded into other 
such cylinders is considered (see figure 1). With n’ and n denoting the corresponding 
indices of refraction of the cylinders a perturbation series in powers of ( n ’ - n )  is 
developed that allows quick and simple evaluation of the external and internal fields for 
small values of (n’- n ) .  In particular, the case of an eccentric circular inhomogeneity 
(see figure 2) is solved by employing separation of variables together with related 
translational addition theorems for cylindrical wavefunctions. In this way satisfaction 
of the boundary conditions at both interfaces leads to appropriate sets of linear 
equations for the determination of the expansion coefficients. Then a perturbation 
series in powers of the difference (n‘ - n )  is developed which allows an analytic solution 
to second order in (n’ - n) .  The series can be easily extended to include higher-order 
terms. 

For non-circular inhomogeneities, i.e. for an arbitrarily shaped imperfection as 
shown in figure 1, the problem is formulated by the Green function method. For 
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Figure 1. Infinitely long cylinder geometry with arbitrarily shaped inhomogeneity. 

Figure 2. Circular inhomegeneity inside a circular infinitely long dielectric cylinder. 

three-dimensional scatterers-such as spheres with internal inhomogeneities-the 
problem has also been investigated and will be published elsewhere. 

Numerical results have been computed for several cases; the convergence of the 
perturbation series and the scattering properties of such complex scatterers is also 
discussed later in this paper. 

2. Eccentric circular inhomogeneity 

The geometry of the problem is defined in figure 2, where a,  b are the outer and inner 
cylinder radii, while the inter centre distance of the cylinders is represented by d. The 
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refractive indices of media I and I1 are n and n’ respectively. The inner cylinder centre 
is assumed always to be on the negative x axis. The wavenumber of free space, region 
111, is denoted by k o .  Both E- and H-wave polarisations will be considered at the same 
time. The incident wave impinging normally on the z axis has the form 

Eo(x, Y 1 = i exp(ikor1 cos(41 - 40)) 
Ho(x, Y )  = exp(ikorl cos(41 - 40)) ( H  wave) 

( E  wave) ( r l 3  a )  
(1) 

where rl, 41 are the polar coordinates and do is the direction of propagation of the 
incident wave. The assumed time dependence is exp(-iwt). 

Since the fields are independent of the z coordinate, scalar potentials can be used to 
describe them. The incident wave can then be expressed as 

m = -m 

For the regions I and I1 of figure 2, the fields can be expanded into cylindrical 
wavefunctions with respect to the origin O2 as follows: 

+m 

q?”= (azHJm(nkorZ)+ b?”Ym(nkor2)) exp(im&) (rz 3 b) (3) 

q5”= cZHJm(n’kOr2) exp(im42) (r2 b) (4) 

m = -m 

+m 

m=-m 

where r2,& are the cylindrical coordinates with respect to the origin O2 and Jm and Ym 
are the usual cylindrical Bessel and Neuman functions. Employing the boundary 
conditions at r2 = b 

*:=*E aqF/ar;, = aqE/ar2 ( 5 )  

and using the identity z i (x )  = (n/x)z,(x) - z,+I(x) for the Bessel functions the follow- 
ing equations are obtained: 

and 

bf;f xJm(x)J:,(x’)-x’J:,(x)Jm(x’) 
x ’J, (x ’) Y h (x ) - X J  h (x ’) Ym (x ) 

= Ff;f(x’, x )  _- 
H -  a 

where x = nkob, x ’=  n’kob. 
The translational addition theorems for cylindrical wavefunctions transform the 

expansion of q?” around the origin O2 to an expansion around the origin O1. 
Assuming that the point (rl, 41) is always outside the circle with diameter 0102 the 
addition theorem from Stratton (1941) and appendix 1 has the form 

where r l >  Id cos 411, Zm(x)  = aJm(x)+  bYm(x) is the general Bessel function and 
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t = nkod. Substituting equation (9) into equation (3) the field with respect to the origin 
O1 is expressed as 

*?.I"."= y p H  1 J m - K ( f ) J K ( n k o r d  exp(iK&)+ b z H  
+a 

m = -02 K=-U2 

+CC 

x c J m - K ( t )  yK(nkor1)  exp(iK41)) 
K = - w  

+ X  

= ( A z H J m ( k o n r l )  + B z H Y m ( k o n r l ) )  exp(imq51) (10) 
m = - X  

where a redefinition of indices has been used and the new coefficients are given as 

Also, the expansion of equation (10) can be transformed back with respect to the 
origin 0 2 ,  again using the addition theorem. In a way analogous to the previous 
procedure we can find the following relations: 

The scattered field outside the main scatterer (i.e. rl > a )  can be expanded in terms 
of cylindrical wavefunctions as 

+m 
E H  ( 1 )  * Z H =  1 d,' H ,  (korl)exp(imq51). 

m = - x  

Expanding the incident plane waves of equation (1) in terms of cylindrical wave- 
functions as shown in equation (2), substituting equations (13) and (10) into the 
boundary conditions at rl = a, 

9: = *:+ *: a*P/ar, = (a@/arl) + (a*sE/arl) (14) 
and 

*;"=*,"+*," n - 2  a*Y/ar1 = (a*,H/arl)+ (a*F/ilarl) (15) 

the following equations are obtained: 

A Z H J m ( y ) + B z H Y m ( y )  = i"Jm(u) exp(-imq50)+dZHHm(v) (16) 

A f y J L ( y ) + B f y Y , ( y )  = i " u J L ( u )  exp(-imq50)+dEvHL(u) (17) 

A , H ~ J : ,  ( y )  + B , H V Y ~  ( y )  = i m y J k  (U) exp(-imqjo) + d f ; f y ~ k  (U) (18) 

where y = nkoa,  U = koa. 
By eliminating the scattering coefficients d:, d: from equations (16), (17) and (18) 

and by using equations (7), (8), (11) and (12), an infinite set of equations is obtained as 
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where 

The infinite set of equations (19) ,  being the result of what is sometimes called in the 
literature a mode-matching technique (Mittra and Lee 1971), can be solved directly 
numerically by truncating the summations in order to obtain a matrix equation 
(Harrington 1968, Mittra 1973). However, whenever ( x ' -  x )  is small analytical 
procedure can be developed. Observing from equations ( 7 )  and ( 8 )  that 

E H  F,,,' ( x ' ,  x)I,,=,= 0 

the following Taylor expansion can be written: 

F Z H ( x ' ,  x ) = ( x ' - x ) F ~ ~ ( ~ ) + ( x ' - x ) ~ A ~ ~ ( ~ ) + .  . . 
The expressions for F z H ( l )  and F Z H ( 2 )  are given in appendix 2. 

Assuming also an analytic expansion of the form 

AZH= A z H ( 0 )  + ( x ' - x ) A Z H ( l )  + ( x ' - x ) ' A z H ( 2 )  + . . . (23)  

and substituting equations (22)  and (23)  into (19)  yields the following expressions for 
the perturbation coefficients: 

A Z H ( 0 )  = 2im+' exp(-im&,)PZH(y, U )  (24)  
+m +m 

A!Y(1) = -DZH(y,  U )  1 JK-m(t )F$H(l )  ATH(0)JK-s( t )  (25)  
K = - m  s=-00 

+m +m 
A Z H ( 2 )  =-DZH(y ,  U )  JK-m(t )FZH(l )  1 ATH(l )JK-S( t )  

K = - m  S=-m 

Obviously this perturbation can be continued indefinitely at the cost, however, of 
increasing the complexity of the coefficients F z H ( n ) .  After determining the set of 
coefficients AZH we can eliminate the cofficients BZH from equations (16) ,  (17) and 
(18)  and obtain simple expressions for the scattered field coefficients d Z H  in terms of 
A E 3  . These are then used to find the scattered field 
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in terms of the scattering amplitude G E * H ( 4 1 ) ,  which is defined as 

GE,H(41)  = 1 dZHi-" exp(im41). 
+m 

m=-m 

Numerical results for eccentric circular inhomogeneities are presented in § 4. 

3. Arbitrarily shaped inhomogeneities; the Green function method 

For the case of an arbitrarily shaped inhomogeneity the method of separation of 
variables cannot be used. Since the boundary conditions for rl  = a are regular a Green 
function method is suggested as follows. Only the E-wave polarisation will be 
considered. Analogous results hold for the H- wave polarisation. 

In order to determine the Green function for the homogeneous cylinder (Irl s a )  (see 
figure l), we use the method developed by Sommerfeld (1964). The Green function is 
defined as the response field to a unit source excitation. The primary field from a unit 
excitation at r' is given as 

Go(r, r ' ) = 2 H o ( k o l r - r ' l ) = $  1 Jm(nkor<)Hm(nkor,) exp[im(4 -4 ' ) ]  (29) 
+oc 

m=-m 

min 
max 

where r I  = (r,  r ' )  and r'< a. 

The induced field inside the cylinder can be expanded into a sum of cylindrical 
wavefunctions as 

+a 

Gi(r, r ' )  = C f m J m ( n k o r )  exp[im(4 -4'11 
m =--cc 

and the field outside can be written as 

Gdr, r ' )  = 
f - c c  

gmHE'  ( kor )  exp[im(4 - 473. 
m = -m 

The Green function defined as the total field of the unit excitation is given as 

G(r, r ' )  = Go(r, r ' )  + Gl(r, r ' )  for Iri s a  

for irl t a. = G2(r, r ' )  

The unknown coefficients fm, g, are determined by using the boundary conditions 

Go+Gl=Gz (aGo/ar) + (aGl/ar) = aGz/ar for Irl= a (33) 
and after some lengthy algebra the Green function is obtained in the form: 
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Using the standard Green theorem and the theory of Green functions (Morse and 
Feshbach 1953) we obtain the relation 

where 

Q0(r)  = q : ( r )  + k i ( n 2 -  1 )  G(r ,  r')Y:(r') dr'. 
I+II  

(37) 

Note that if both r and r' are restricted inside region I1 in equation ( 3 6 )  we obtain an 
integral equation for the field inside the region of inhomogeneity. If this is determined 
from the integral equation it is a straightfemvard matter to obtain the fields inside region 
I and the scattered field by using equation ( 3 6 )  for r E I and Irl > a  respectively. Since 
for an arbitrary shape it is not expected that equation ( 3 6 )  can be solved exactly, an 
approximate technique must be used. A Galerkin procedure or a Born approximation 
can be applied. 

Finally, it should be noted that for a circular inhomogenity, as shown in figure 2 ,  the 
field inside the inner cylinder (i.e. r2 < b )  can be described by an expansion such as the 
one given in equation (4). From this expansion exactly the same results are obtained by 
solving the integral equation with those of 9 2 .  This provides a valuable check on all 
previous formulae and results of the paper. 

4. Numerical computations 

Numerical computations have been carried out for eccentric circular inhomogeneities. 
A computer program has been developed for the E and H incident wave cases. The 
coefficients A E H ( 0 ) ,  A2H(1)  and A z H ( 2 )  are computed by using equations ( 2 4 ) ,  ( 2 5 )  
and ( 2 6 )  where the convergence of the series is ensured by including in the summation 
terms of index IK - m I larger than t .  Bessel and Neuman functions are computed by 
standard routines based on well known methods (Abramowitz and Stegun 1961).  More 
specifically, 1 K - d  was extended up to 2y  and the convergence of the series was 
checked in each individual case numerically. In tables 1 and 2 results are given for the 
coefficients AE(O), A:( 1) and A E ( 2 ) ,  corresponding to small and large eccentricities 
(i.e. t ) ,  respectively. It is shown that for t<< 1 only the dominant partial waves are 

Table 1. Convergence of perturbation series coefficients for n = 1.3, a = 5.0, b = 0.3, 
d = 0.3, k = 1.0, 40 = 0.0. 

1.96(-1) +il.02(0) 
-9.22(-1) -i1.69(-2) 
-2.77(- 1) - il.09(0) 

8.03(-1) -i2.53(-1) 
2.67( - 1) + i 1 . O  l(0) 

-6.15(-1) + il.OS(0) 
-6.00(-1) -i4.17(-2) 

2.69(-3) - i3.50(- 1) 

-5,OO(- 1) + i4.59(-1) 
l . O l ( - l )  -i3.74(-2) 

- 1.05 (-2) + i 1.14(-2) 
3.97(-4)-i4.02(-4) 

-4.22(-5) + i1.84(-5) 
6.22(-7) - i2.41(-6) 
4.8 1 (-9) + i2.5 2( - 8) 
5.77 (- 10) + i 1,35(- 10) 

-8.82(-1) + i8.11(-1) 
1.7W-1) - i6.34(-2) 

-1.90(-2)+i1.94(-2) 
7.27(-4) - i6.7.5-4) 

-7.56(-5) +i2.78(-5) 
1.39(-6) -i4.11(-6) 
4.53(-9) + i4.43(-8) 
9.69(- 1 0) t i3.3 3 (- 1 0) 
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Table 2. Convergence of perturbation series coefficients for n = 1.3, a = 5.0, 6 = 0.3, 
d=4.0,  k =  1.0, & = O . O .  

m 

0 
1 
2 
3 
4 
5 
6 
7 

- ~ 

1.96(-1) - i1.02(0) 
-9.22(-1) - i1.69(-2) 
-2.77(-1) - 11.09(0) 

8.03(-1) - 12.53(-1) 
2.67(-1) +11.01(0) 

-6.15(-1) + il.OS(0) 
-6.00(-1) - i4.17(-2) 

2.69(-3) - i3.50(-1) 

A & ( l ) =  (-l)mAF-m(l) 

3.00(-2) +i5.48(-2) 
-2.48(-2) -i1,46(-1) 

1.38(-2) + i5.15 (-3) 
4.67(-2) + il.06(-1) 
2.72(-3)-i2.32(-1) 
1.70(-1) +il.54(-1) 
3.60(-2) - i l .3q-1) 

-1.01(-2) +i9.03(-3) 

Afm(2) = (-1)"Af-,(2) 

5,41(-2) +i9,40(-2) 
-4.26(-2) - i2.55(-1) 

2.20(-2) +il.12(-2) 
8.21(-2) + il.84(-1) 
5.97(-3) -i4.06(-1) 
2.96(-1 j + i2.71(-1) 

-6.29(-2) - i2.42(-2) 
-1.80(-2) + i1.56(-2) 

distorted whereas for kd - ka (i.e. y I: t )  a spread to all of the partial waves occurs. Note 
that the convergence of the perturbation series is determined from the value of 
X I  - x  = (n ' -  n)kob,  i.e. the additional phase-shift inside the inhomogeneous region. 
The convergence of the series in equation (28), for the scattered field, is determined 
from the size of nkoa = y. As in ordinary scattering (by homogeneous circular cylin- 
ders) the number of terms which must be summed is slightly larger than y = nkoa. For 
H-wave polarisation a similar behaviour is observed. In figures 3 and 4 scattering 
patterns for a specific scatterer are given. Note that, even for a small value of 
kob(n'- n ) ,  the asymmetry of the side lobes is detectable. It should also be noted that 
within the restriction / X I -  X I  < 1 the method can be used for any values of koa, kod and 
n. This is an advantage over certain numerical methods, such as the method of 
moments, where the matrix size could be a restrictive factor for the case of large koa, 
kod and n values. Finally, in table 3, and for several incident wave directions, the total 
(UT) and backscattering (UB) cross sections are evaluated for a specific scatterer. It can 
be seen that U B  undergoes an almost 60% change or a 0" to 90" change in the direction 
of incidence. This is an indication of the existing inhomogeneities. 

0 L O  80 120 160 203 2 L O  280 320 360 
Q ldegl 

Figure 3. Scattering intensity IGE(4)/  as a function of 4 for an eccentric circular inhomo- 
geneous cylindrical scatterer, ko = 1.0, d = 4.0, n' = 2.0, n = 1.3, a = 5.0, 6 = 0.3 and 
f#Jo = 0.0. 
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U- 
0 

Q ldegl 

Figure 4. The same scatterer of figure 3 with bo = $7. 

Table 3. Total ( g ~ )  and backscattering (gB) cross sections for k = 1.0, a = 5.0, b = 0.3, 
n '  = 2.0, n = 1.3, d = 4.0 and several incident waves. 
~ 

40 Polarisation UT U B  

0" H 3.44 1.56 
90" H 3.46 1.40 
0" E 3.58 1.26 
90" E 3.66 2.00 

5. Conclusions 

The problem of scattering from arbitrarily shaped inhomogeneous cylindrical scatterers 
is investigated. For eccentric circular inhomogeneities embedded in a circular cylinder 
a perturbation technique is developed. The perturbation series expansion parameter is 
proportional to the index of refraction difference between the outer and inner cylinders. 
The method is very powerful from the computational viewpoint. For a general, 
arbitrary inhomogeneity a Green function approach is developed which can be easily 
applied in conjunction with numerical or perturbation techniques. Numerical compu- 
tations show that valuable information can be obtained about the inner structure of a 
body by observing the field scattered from it. 

Appendix 1. Proof of the cylindrical translational theorem 

According to Stratton (1941, p 374) and the related figure in the same reference we 
have 

i-00 

H'," (Arl) exp(inll) = J,,,(Aro)H!,% ( A r )  exp[im(8 - eo)] 
m=-m 
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for Irl> Iro cos(8 -&)I, where 4 = 

H?)(Arl) exp(in8d = 1 J m ( A r o ) H ? i m ( A r )  exp[i(m + n ) 8 ]  

= JK-,(Aro)H$'(Ar) exp(iK8) 

- 8. Since we always use 80 = 0 we have 
+W 

m = - w  

+m 

K = - m  

where we have redefined the summation index. The last expression is exactly the same 
as our equation (9). 

Appendix 2. Expansion coefficients for (x', x) 
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